Title: | 'R' Bindings for 'TMB' |
---|---|
Description: | Native 'R' interface to 'TMB' (Template Model Builder) so models can be written entirely in 'R' rather than 'C++'. Automatic differentiation, to any order, is available for a rich subset of 'R' features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. 'RTMBp' provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>. |
Authors: | Kasper Kristensen [aut, cre] |
Maintainer: | Kasper Kristensen <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.6 |
Built: | 2025-01-10 06:06:41 UTC |
Source: | https://github.com/kaskr/RTMB |
The package 'RTMB' provides a native R interface for a subset of 'TMB' so you can avoid coding in C++. 'RTMB' only affects the 'TMB' function 'MakeADFun' that builds the objective function. Once 'MakeADFun' has been invoked, everything else is exactly the same and models run as fast as if coded in C++.
'RTMB' offers a greatly simplified interface to 'TMB'. The TMB objective function can now be written entirely in R rather than C++ (TMB-interface). In addition, we highlight two new simplifications:
For the most cases, simulation testing can be carried out automatically without the need to add simulation blocks (Simulation).
Also, quantile residuals can be obtained without any essential modifications to the objective function (OSA-residuals).
The introduction vignette describes these basic features - see vignette("RTMB-introduction")
.
In addition to the usual MakeADFun interface, 'RTMB' offers a lower level interface to the AD machinery (MakeTape
). MakeTape replaces the functionality you would normally get in 'TMB' using C++ functors, such as calculating derivatives inside the objective function.
The advanced vignette covers these topics - see vignette("RTMB-advanced")
.
'RTMB' relies heavily on the new AD framework 'TMBad' without which this interface would not be possible.
Kasper Kristensen
Maintainer: [email protected]
Distributional assignment operator
x %~% distr
x %~% distr
x |
LHS; Random effect or data for which distribution assignment applies |
distr |
RHS; Distribution expression |
Provides a slightly simplified syntax inspired by, but not compatible with, other probabilistic programming languages (e.g. BUGS/JAGS):
x %~% distribution(...)
is syntactic sugar for .nll <- .nll - sum(distribution(x,...,log=TRUE))
The variable .nll
is automatically initialized to 0
and returned on exit.
The updated value of the hidden variable .nll
.
If the shorter name ~
is preferred, it can be locally overloaded using "~" <- RTMB::"%~%"
.
f <- function(parms) { getAll(parms) x %~% dnorm(mu, 1) y %~% dpois(exp(x)) } p <- list(mu=0, x=numeric(10)) y <- 1:10 obj <- MakeADFun(f, p, random="x")
f <- function(parms) { getAll(parms) x %~% dnorm(mu, 1) y %~% dpois(exp(x)) } p <- list(mu=0, x=numeric(10)) y <- 1:10 obj <- MakeADFun(f, p, random="x")
Signify that this object should be given an AD interpretation if evaluated in an active AD context. Otherwise, keep object as is.
AD(x, force = FALSE)
AD(x, force = FALSE)
x |
Object to be converted. |
force |
Logical; Force AD conversion even if no AD context? (for debugging) |
AD
is a generic constructor, converting plain R structures to RTMB objects if in an autodiff context. Otherwise, it does nothing (and adds virtually no computational overhead).
AD
knows the following R objects:
Numeric objects from base, such as numeric()
, matrix()
, array()
, are converted to class advector with other attributes kept intact.
Complex objects from base, such as complex()
, are converted to class adcomplex.
Sparse matrices from Matrix, such as Matrix()
, Diagonal()
, are converted to adsparse
which is essentially a dgCMatrix
with advector x-slot.
AD
provides a reliable way to avoid problems with method dispatch when mixing operand types. For instance, sub assigning x[i] <- y
may be problematic when x
is numeric and y
is advector
. A prior statement x <- AD(x)
solves potential method dispatch issues and can therefore be used as a reliable alternative to ADoverload.
## numeric object to AD AD(numeric(4), force=TRUE) ## complex object to AD AD(complex(4), force=TRUE) ## Convert sparse matrices (Matrix package) to AD representation F <- MakeTape(function(x) { M <- AD(Matrix::Matrix(0,4,4)) M[1,] <- x D <- AD(Matrix::Diagonal(4)) D@x[] <- x M + D }, 0) F(2)
## numeric object to AD AD(numeric(4), force=TRUE) ## complex object to AD AD(complex(4), force=TRUE) ## Convert sparse matrices (Matrix package) to AD representation F <- MakeTape(function(x) { M <- AD(Matrix::Matrix(0,4,4)) M[1,] <- x D <- AD(Matrix::Diagonal(4)) D@x[] <- x M + D }, 0) F(2)
These base apply methods have been modified to keep the AD class attribute (which would otherwise be lost).
## S4 method for signature 'advector' apply(X, MARGIN, FUN, ..., simplify = TRUE) ## S4 method for signature 'ANY' sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
## S4 method for signature 'advector' apply(X, MARGIN, FUN, ..., simplify = TRUE) ## S4 method for signature 'ANY' sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
X |
As apply |
MARGIN |
As apply |
FUN |
As apply |
... |
As apply |
simplify |
As sapply |
USE.NAMES |
As sapply |
Object of class "advector"
with a dimension attribute.
F <- MakeTape(function(x) apply(matrix(x,2,2), 2, sum), numeric(4)) F$jacobian(1:4)
F <- MakeTape(function(x) apply(matrix(x,2,2), 2, sum), numeric(4)) F$jacobian(1:4)
A limited set of complex number operations can be used when constructing AD tapes. The available methods are listed in this help page.
adcomplex(real, imag = rep(advector(0), length(real))) ## S3 method for class 'adcomplex' Re(z) ## S3 method for class 'adcomplex' Im(z) ## S4 method for signature 'adcomplex' show(object) ## S3 method for class 'adcomplex' dim(x) ## S3 replacement method for class 'adcomplex' dim(x) <- value ## S3 method for class 'adcomplex' x[...] ## S3 replacement method for class 'adcomplex' x[...] <- value ## S3 method for class 'adcomplex' t(x) ## S3 method for class 'adcomplex' length(x) ## S3 method for class 'adcomplex' Conj(z) ## S3 method for class 'adcomplex' Mod(z) ## S3 method for class 'adcomplex' Arg(z) ## S3 method for class 'adcomplex' x + y ## S3 method for class 'adcomplex' x - y ## S3 method for class 'adcomplex' x * y ## S3 method for class 'adcomplex' x / y ## S3 method for class 'adcomplex' exp(x) ## S3 method for class 'adcomplex' log(x, base) ## S3 method for class 'adcomplex' sqrt(x) ## S4 method for signature 'adcomplex' fft(z, inverse = FALSE) ## S4 method for signature 'advector' fft(z, inverse = FALSE) ## S3 method for class 'adcomplex' rep(x, ...) ## S3 method for class 'adcomplex' as.vector(x, mode = "any") ## S3 method for class 'adcomplex' is.matrix(x) ## S3 method for class 'adcomplex' as.matrix(x, ...) ## S4 method for signature 'adcomplex,ANY' x %*% y ## S4 method for signature 'adcomplex,ANY' solve(a, b) ## S4 method for signature 'adcomplex' colSums(x) ## S4 method for signature 'adcomplex' rowSums(x) ## S4 method for signature 'adcomplex,ANY,ANY' diag(x) ## S4 method for signature 'advector,adcomplex' Ops(e1, e2) ## S4 method for signature 'adcomplex,advector' Ops(e1, e2)
adcomplex(real, imag = rep(advector(0), length(real))) ## S3 method for class 'adcomplex' Re(z) ## S3 method for class 'adcomplex' Im(z) ## S4 method for signature 'adcomplex' show(object) ## S3 method for class 'adcomplex' dim(x) ## S3 replacement method for class 'adcomplex' dim(x) <- value ## S3 method for class 'adcomplex' x[...] ## S3 replacement method for class 'adcomplex' x[...] <- value ## S3 method for class 'adcomplex' t(x) ## S3 method for class 'adcomplex' length(x) ## S3 method for class 'adcomplex' Conj(z) ## S3 method for class 'adcomplex' Mod(z) ## S3 method for class 'adcomplex' Arg(z) ## S3 method for class 'adcomplex' x + y ## S3 method for class 'adcomplex' x - y ## S3 method for class 'adcomplex' x * y ## S3 method for class 'adcomplex' x / y ## S3 method for class 'adcomplex' exp(x) ## S3 method for class 'adcomplex' log(x, base) ## S3 method for class 'adcomplex' sqrt(x) ## S4 method for signature 'adcomplex' fft(z, inverse = FALSE) ## S4 method for signature 'advector' fft(z, inverse = FALSE) ## S3 method for class 'adcomplex' rep(x, ...) ## S3 method for class 'adcomplex' as.vector(x, mode = "any") ## S3 method for class 'adcomplex' is.matrix(x) ## S3 method for class 'adcomplex' as.matrix(x, ...) ## S4 method for signature 'adcomplex,ANY' x %*% y ## S4 method for signature 'adcomplex,ANY' solve(a, b) ## S4 method for signature 'adcomplex' colSums(x) ## S4 method for signature 'adcomplex' rowSums(x) ## S4 method for signature 'adcomplex,ANY,ANY' diag(x) ## S4 method for signature 'advector,adcomplex' Ops(e1, e2) ## S4 method for signature 'adcomplex,advector' Ops(e1, e2)
real |
Real part |
imag |
Imaginary part |
z |
An object of class |
object |
An object of class |
x |
An object of class |
value |
Replacement value |
... |
As [ |
y |
An object of class |
base |
Not implemented |
inverse |
As fft |
mode |
As as.vector |
a |
matrix |
b |
matrix, vector or missing |
e1 |
Left operand |
e2 |
Right operand |
Object of class "adcomplex"
.
adcomplex()
: Construct adcomplex
vector
Re(adcomplex)
: As complex
Im(adcomplex)
: As complex
show(adcomplex)
: Print method
dim(adcomplex)
: As dim
dim(adcomplex) <- value
: As dim
[
: As [
`[`(adcomplex) <- value
: As [<-
t(adcomplex)
: As t
length(adcomplex)
: As length
Conj(adcomplex)
: As complex
Mod(adcomplex)
: As complex
Arg(adcomplex)
: As complex
+
: As complex
-
: As complex
*
: As complex
/
: As complex
exp(adcomplex)
: As complex
log(adcomplex)
: As complex
sqrt(adcomplex)
: As complex
fft(adcomplex)
: Fast Fourier Transform equivalent to fft. Notably this is the multivariate transform when x
is an array.
fft(advector)
: If real input is supplied it is first converted to complex.
rep(adcomplex)
: As rep
as.vector(adcomplex)
: Apply for each of real/imag
is.matrix(adcomplex)
: Apply for real
as.matrix(adcomplex)
: Apply for each of real/imag
x %*% y
: Complex matrix multiply
solve(a = adcomplex, b = ANY)
: Complex matrix inversion and solve
colSums(adcomplex)
: Apply for each of real/imag
rowSums(adcomplex)
: Apply for each of real/imag
diag(x = adcomplex, nrow = ANY, ncol = ANY)
: Apply for each of real/imag
Ops(e1 = advector, e2 = adcomplex)
: Mixed real/complex arithmetic
Ops(e1 = adcomplex, e2 = advector)
: Mixed real/complex arithmetic
## Tape using complex operations F <- MakeTape(function(x) { x <- as.complex(x) y <- exp( x * ( 1 + 2i ) ) c(Re(y), Im(y)) }, numeric(1)) F F(1) ## Complex FFT on the tape G <- MakeTape(function(x) sum(Re(fft(x))), numeric(3)) G$simplify() G$print()
## Tape using complex operations F <- MakeTape(function(x) { x <- as.complex(x) y <- exp( x * ( 1 + 2i ) ) c(Re(y), Im(y)) }, numeric(1)) F F(1) ## Complex FFT on the tape G <- MakeTape(function(x) sum(Re(fft(x))), numeric(3)) G$simplify() G$print()
These base constructors have been extended to keep the AD class attribute of the data argument.
## S4 method for signature 'advector,ANY,ANY' diag(x, nrow, ncol) ## S4 method for signature 'advector' matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) ## S4 method for signature 'num.' matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
## S4 method for signature 'advector,ANY,ANY' diag(x, nrow, ncol) ## S4 method for signature 'advector' matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) ## S4 method for signature 'num.' matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
x |
As diag |
nrow |
As matrix |
ncol |
As matrix |
data |
As matrix |
byrow |
As matrix |
dimnames |
As matrix |
Object of class "advector"
with a dimension attribute.
diag(x = advector, nrow = ANY, ncol = ANY)
: Equivalent of diag
matrix(advector)
: Equivalent of matrix
matrix(num.)
: Equivalent of matrix
func <- function(x) { M <- matrix(x, 2, 2) print(class(M)) D <- diag(x) print(class(D)) 0 } invisible(func(1:4)) ## 'matrix' 'array' invisible(MakeTape(func, 1:4)) ## 'advector'
func <- function(x) { M <- matrix(x, 2, 2) print(class(M)) D <- diag(x) print(class(D)) 0 } invisible(func(1:4)) ## 'matrix' 'array' invisible(MakeTape(func, 1:4)) ## 'advector'
Writing custom AD adjoint derivatives from R
ADjoint(f, df, name = NULL, complex = FALSE)
ADjoint(f, df, name = NULL, complex = FALSE)
f |
R function representing the function value. |
df |
R function representing the reverse mode derivative. |
name |
Internal name of this atomic. |
complex |
Logical; Assume complex and adcomplex types for all arguments? |
Reverse mode derivatives (adjoint code) can be implemented from R using the function ADjoint
. It takes as input a function of a single argument f(x)
representing the function value, and another function of three arguments df(x, y, dy)
representing the adjoint derivative wrt x
defined as d/dx sum( f(x) * dy )
. Both y
and dy
have the same length as f(x)
. The argument y
can be assumed equal to f(x)
to avoid recalculation during the reverse pass. It should be assumed that all arguments x
, y
, dy
are vectors without any attributes except for dimensions, which are stored on first evaluation. The latter is convenient when implementing matrix functions (see logdet
example).
Higher order derivatives automatically work provided that df
is composed by functions that RTMB
already knows how to differentiate.
A function that allows for numeric and taped evaluation.
The argument complex=TRUE
specifies that the functions f
and df
are complex differentiable (holomorphic) and that arguments x
, y
and dy
should be assumed complex (or adcomplex). Recall that complex differentiability is a strong condition excluding many continuous functions e.g. Re
, Im
, Conj
(see example).
ADjoint
may be useful when you need a special atomic function which is not yet available in RTMB
, or just to experiment with reverse mode derivatives.
However, the approach may cause a significant overhead compared to native RTMB
derivatives. In addition, the approach is not thread safe, i.e. calling R functions cannot be done in parallel using OpenMP.
############################################################################ ## Lambert W-function defined by W(y*exp(y))=y W <- function(x) { logx <- log(x) y <- pmax(logx, 0) while (any(abs(logx - log(y) - y) > 1e-9, na.rm = TRUE)) { y <- y - (y - exp(logx - y)) / (1 + y) } y } ## Derivatives dW <- function(x, y, dy) { dy / (exp(y) * (1. + y)) } ## Define new derivative symbol LamW <- ADjoint(W, dW) ## Test derivatives (F <- MakeTape(function(x)sum(LamW(x)), numeric(3))) F(1:3) F$print() ## Note the 'name' F$jacobian(1:3) ## gradient F$jacfun()$jacobian(1:3) ## hessian ############################################################################ ## Log determinant logdet <- ADjoint( function(x) determinant(x, log=TRUE)$modulus, function(x, y, dy) t(solve(x)) * dy, name = "logdet") (F <- MakeTape(logdet, diag(2))) ## Test derivatives ## Compare with numDeriv::hessian(F, matrix(1:4,2)) F$jacfun()$jacobian(matrix(1:4,2)) ## Hessian ############################################################################ ## Holomorphic extension of 'solve' matinv <- ADjoint( solve, function(x,y,dy) -t(y) %*% dy %*% t(y), complex=TRUE) (F <- MakeTape(function(x) Im(matinv(x+AD(1i))), diag(2))) ## Test derivatives ## Compare with numDeriv::jacobian(F, matrix(1:4,2)) F$jacobian(matrix(1:4,2))
############################################################################ ## Lambert W-function defined by W(y*exp(y))=y W <- function(x) { logx <- log(x) y <- pmax(logx, 0) while (any(abs(logx - log(y) - y) > 1e-9, na.rm = TRUE)) { y <- y - (y - exp(logx - y)) / (1 + y) } y } ## Derivatives dW <- function(x, y, dy) { dy / (exp(y) * (1. + y)) } ## Define new derivative symbol LamW <- ADjoint(W, dW) ## Test derivatives (F <- MakeTape(function(x)sum(LamW(x)), numeric(3))) F(1:3) F$print() ## Note the 'name' F$jacobian(1:3) ## gradient F$jacfun()$jacobian(1:3) ## hessian ############################################################################ ## Log determinant logdet <- ADjoint( function(x) determinant(x, log=TRUE)$modulus, function(x, y, dy) t(solve(x)) * dy, name = "logdet") (F <- MakeTape(logdet, diag(2))) ## Test derivatives ## Compare with numDeriv::hessian(F, matrix(1:4,2)) F$jacfun()$jacobian(matrix(1:4,2)) ## Hessian ############################################################################ ## Holomorphic extension of 'solve' matinv <- ADjoint( solve, function(x,y,dy) -t(y) %*% dy %*% t(y), complex=TRUE) (F <- MakeTape(function(x) Im(matinv(x+AD(1i))), diag(2))) ## Test derivatives ## Compare with numDeriv::jacobian(F, matrix(1:4,2)) F$jacobian(matrix(1:4,2))
Matrices (base package) and sparse matrices (Matrix package) can be used inside the RTMB
objective function as part of the calculations. Behind the scenes these R objects are converted to AD representations when needed. AD objects have a temporary lifetime, so you probably won't see them / need to know them. The only important thing is which methods work for the objects.
## S3 method for class 'advector' chol(x, ...) ## S3 method for class 'advector' determinant(x, logarithm = TRUE, ...) ## S4 method for signature 'adcomplex' eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE) ## S4 method for signature 'advector' eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE) ## S4 method for signature 'advector' svd(x, nu, nv, LINPACK = FALSE) ## S3 method for class 'adsparse' t(x) ## S3 method for class 'adsparse' x[...] ## S3 replacement method for class 'adsparse' x[...] <- value ## S4 method for signature 'adsparse,missing,missing' diag(x) ## S4 method for signature 'advector' expm(x) ## S4 method for signature 'adsparse' expm(x) ## S4 method for signature 'adsparse' dim(x) ## S4 method for signature 'anysparse,ad' x %*% y ## S4 method for signature 'ad,anysparse' x %*% y ## S4 method for signature 'adsparse,adsparse' x %*% y ## S4 method for signature 'ad,ad' x %*% y ## S4 method for signature 'ad,ad.' tcrossprod(x, y) ## S4 method for signature 'ad,ad.' crossprod(x, y) ## S4 method for signature 'advector' cov2cor(V) ## S4 method for signature 'ad,ad.' solve(a, b) ## S4 method for signature 'num,num.' solve(a, b) ## S4 method for signature 'anysparse,ad.' solve(a, b) ## S4 method for signature 'advector' colSums(x, na.rm, dims) ## S4 method for signature 'advector' rowSums(x, na.rm, dims) ## S3 method for class 'advector' cbind(...) ## S3 method for class 'advector' rbind(...)
## S3 method for class 'advector' chol(x, ...) ## S3 method for class 'advector' determinant(x, logarithm = TRUE, ...) ## S4 method for signature 'adcomplex' eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE) ## S4 method for signature 'advector' eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE) ## S4 method for signature 'advector' svd(x, nu, nv, LINPACK = FALSE) ## S3 method for class 'adsparse' t(x) ## S3 method for class 'adsparse' x[...] ## S3 replacement method for class 'adsparse' x[...] <- value ## S4 method for signature 'adsparse,missing,missing' diag(x) ## S4 method for signature 'advector' expm(x) ## S4 method for signature 'adsparse' expm(x) ## S4 method for signature 'adsparse' dim(x) ## S4 method for signature 'anysparse,ad' x %*% y ## S4 method for signature 'ad,anysparse' x %*% y ## S4 method for signature 'adsparse,adsparse' x %*% y ## S4 method for signature 'ad,ad' x %*% y ## S4 method for signature 'ad,ad.' tcrossprod(x, y) ## S4 method for signature 'ad,ad.' crossprod(x, y) ## S4 method for signature 'advector' cov2cor(V) ## S4 method for signature 'ad,ad.' solve(a, b) ## S4 method for signature 'num,num.' solve(a, b) ## S4 method for signature 'anysparse,ad.' solve(a, b) ## S4 method for signature 'advector' colSums(x, na.rm, dims) ## S4 method for signature 'advector' rowSums(x, na.rm, dims) ## S3 method for class 'advector' cbind(...) ## S3 method for class 'advector' rbind(...)
x |
matrix (sparse or dense) |
... |
As cbind |
logarithm |
Not used |
symmetric |
Logical; Is input matrix symmetric (Hermitian) ? |
only.values |
Ignored |
EISPACK |
Ignored |
nu |
Ignored |
nv |
Ignored |
LINPACK |
Ignored |
value |
Replacement value |
y |
matrix (sparse or dense) |
V |
Covariance matrix |
a |
matrix |
b |
matrix, vector or missing |
na.rm |
Logical; Remove NAs while taping. |
dims |
List (vectors/values) with adcomplex
components.
List (vectors/values) with advector
components in symmetric case and adcomplex
components otherwise.
Object of class advector
with a dimension attribute for dense matrix operations; Object of class adsparse
for sparse matrix operations.
chol(advector)
: AD matrix cholesky
determinant(advector)
: AD log determinant
eigen(adcomplex)
: General AD eigen decomposition for complex matrices. Note that argument symmetric
is not auto-detected so must be specified.
eigen(advector)
: AD eigen decomposition for real matrices. The non-symmetric case is redirected to the adcomplex
method. Note that argument symmetric
is not auto-detected so must be specified.
svd(advector)
: AD svd decomposition for real matrices.
t(adsparse)
: AD sparse matrix transpose. Re-directs to t,CsparseMatrix-method.
[
: AD sparse matrix subsetting. Re-directs to [-methods.
`[`(adsparse) <- value
: AD sparse matrix subset assignment. Re-directs to [<–methods.
diag(x = adsparse, nrow = missing, ncol = missing)
: AD sparse matrix diagonal extract. Re-directs to diag,CsparseMatrix-method.
expm(advector)
: AD matrix exponential
expm(adsparse)
: AD matrix exponential
dim(adsparse)
: AD sparse matrix dimension
x %*% y
: AD matrix multiply
x %*% y
: AD matrix multiply
x %*% y
: AD matrix multiply
x %*% y
: AD matrix multiply
tcrossprod(x = ad, y = ad.)
: AD matrix multiply
crossprod(x = ad, y = ad.)
: AD matrix multiply
cov2cor(advector)
: AD matrix cov2cor
solve(a = ad, b = ad.)
: AD matrix inversion and solve
solve(a = num, b = num.)
: AD matrix inversion and solve
solve(a = anysparse, b = ad.)
: Sparse AD matrix solve (not yet implemented)
colSums(advector)
: AD matrix (or array) colsums
rowSums(advector)
: AD matrix (or array) rowsums
cbind(advector)
: AD matrix column bind
rbind(advector)
: AD matrix row bind
F <- MakeTape(function(x) matrix(1:9,3,3) %*% x, numeric(3)) F$jacobian(1:3) F <- MakeTape(function(x) Matrix::expm(matrix(x,2,2)), numeric(4)) F$jacobian(1:4) F <- MakeTape(det, diag(2)) ## Indirectly available via 'determinant' F$jacobian(matrix(1:4,2))
F <- MakeTape(function(x) matrix(1:9,3,3) %*% x, numeric(3)) F$jacobian(1:3) F <- MakeTape(function(x) Matrix::expm(matrix(x,2,2)), numeric(4)) F$jacobian(1:4) F <- MakeTape(det, diag(2)) ## Indirectly available via 'determinant' F$jacobian(matrix(1:4,2))
Enable extra RTMB convenience methods
ADoverload(x = c("[<-", "c", "diag<-"))
ADoverload(x = c("[<-", "c", "diag<-"))
x |
Name of primitive to overload |
Work around limitations in R's method dispatch system by overloading some selected primitives, currently:
Inplace replacement, so you can do x[i] <- y
when x
is numeric and y
is AD.
Mixed combine, so you can do e.g. c(x, y)
when x
numeric and y
is AD.
Diagonal assignment, so you can do diag(x) <- y
when x
is a numeric matrix and y
is AD.
In all cases, the result should be AD.
The methods are automatically temporarily attached to the search path (search()
) when entering MakeTape or MakeADFun.
Alternatively, methods can be overloaded locally inside functions using e.g. "[<-" <- ADoverload("[<-")
. This is only needed when using RTMB from a package.
Function representing the overload.
MakeTape(function(x) {print(search()); x}, numeric(0)) MakeTape(function(x) c(1,x), 1:3) MakeTape(function(x) {y <- 1:3; y[2] <- x; y}, 1) MakeTape(function(x) {y <- matrix(0,3,3); diag(y) <- x; y}, 1:3)
MakeTape(function(x) {print(search()); x}, numeric(0)) MakeTape(function(x) c(1,x), 1:3) MakeTape(function(x) {y <- 1:3; y[2] <- x; y}, 1) MakeTape(function(x) {y <- matrix(0,3,3); diag(y) <- x; y}, 1:3)
An advector
is a class used behind the scenes to replace
normal R numeric objects during automatic differentiation. An
advector
has a 'temporary lifetime' and therefore you do not
see / need to know it as a normal user.
advector(x) ## S3 method for class 'advector' Ops(e1, e2) ## S3 method for class 'advector' Math(x, ...) ## S3 method for class 'advector' as.vector(x, mode = "any") ## S3 method for class 'advector' as.complex(x, ...) ## S3 method for class 'advector' aperm(a, perm, ...) ## S3 method for class 'advector' c(...) ## S3 method for class 'advector' x[...] ## S3 replacement method for class 'advector' x[...] <- value ## S3 method for class 'advector' x[[...]] ## S3 method for class 'advector' rep(x, ...) ## S3 method for class 'advector' is.nan(x) ## S3 method for class 'advector' is.finite(x) ## S3 method for class 'advector' is.infinite(x) ## S3 method for class 'advector' is.na(x) ## S3 method for class 'advector' sum(x, ..., na.rm = FALSE) ## S3 method for class 'advector' mean(x, ...) ## S3 method for class 'advector' prod(x, ..., na.rm) ## S3 method for class 'advector' is.numeric(x) ## S3 method for class 'advector' as.double(x, ...) ## S3 method for class 'advector' Complex(z) ## S3 method for class 'advector' Summary(..., na.rm = FALSE) ## S3 method for class 'advector' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'advector' print(x, ...) ## S4 method for signature 'num,ad,ad' ifelse(test, yes, no) ## S4 method for signature 'num,num,num' ifelse(test, yes, no)
advector(x) ## S3 method for class 'advector' Ops(e1, e2) ## S3 method for class 'advector' Math(x, ...) ## S3 method for class 'advector' as.vector(x, mode = "any") ## S3 method for class 'advector' as.complex(x, ...) ## S3 method for class 'advector' aperm(a, perm, ...) ## S3 method for class 'advector' c(...) ## S3 method for class 'advector' x[...] ## S3 replacement method for class 'advector' x[...] <- value ## S3 method for class 'advector' x[[...]] ## S3 method for class 'advector' rep(x, ...) ## S3 method for class 'advector' is.nan(x) ## S3 method for class 'advector' is.finite(x) ## S3 method for class 'advector' is.infinite(x) ## S3 method for class 'advector' is.na(x) ## S3 method for class 'advector' sum(x, ..., na.rm = FALSE) ## S3 method for class 'advector' mean(x, ...) ## S3 method for class 'advector' prod(x, ..., na.rm) ## S3 method for class 'advector' is.numeric(x) ## S3 method for class 'advector' as.double(x, ...) ## S3 method for class 'advector' Complex(z) ## S3 method for class 'advector' Summary(..., na.rm = FALSE) ## S3 method for class 'advector' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'advector' print(x, ...) ## S4 method for signature 'num,ad,ad' ifelse(test, yes, no) ## S4 method for signature 'num,num,num' ifelse(test, yes, no)
x |
numeric or advector |
e1 |
advector |
e2 |
advector |
... |
Additional arguments |
mode |
FIXME might not be handled correctly by |
a |
advector with dimension attribute |
perm |
Permutation as in |
value |
Replacement value implicitly converted to AD |
na.rm |
Must be FALSE (default) |
z |
Complex (not allowed) |
lag |
As diff |
differences |
As diff |
test |
|
yes |
|
no |
|
An AD vector (class='advector') is an atomic R vector of 'codes' that are internally interpretable as 'AD scalars'. A substantial part of R's existing S3 matrix and array functionality can be re-used for AD vectors.
Object of class "advector"
.
advector()
: Construct a new advector
Ops(advector)
: Binary operations
Math(advector)
: Unary operations
as.vector(advector)
: Makes array(x)
work.
as.complex(advector)
: Convert to ADcomplex. Note that dimensions are dropped for consistency with base R.
aperm(advector)
: Equivalent of aperm
c(advector)
: Equivalent of c. However note the limitation for mixed types: If x
is an AD type, c(x,1)
works while c(1,x)
does not!
[
: Equivalent of [
`[`(advector) <- value
: Equivalent of [<-
[[
: Equivalent of [[
rep(advector)
: Equivalent of rep. Makes outer(x,x,...)
work.
is.nan(advector)
: Equivalent of is.nan. Check NaN status of a constant advector
expression. If not constant throw an error.
is.finite(advector)
: Equivalent of is.finite. Check finite status of a constant advector
expression. If not constant throw an error.
is.infinite(advector)
: Equivalent of is.infinite. Check infinity status of a constant advector
expression. If not constant throw an error.
is.na(advector)
: Equivalent of is.na. Check NA status of an advector
. NAs can only occur directly (as constants) or indirectly as the result of an operation with NA operands. For a tape built with non-NA parameters the NA status of any expression is constant and can therefore safely be used as part of the calculations. (assuming correct propagation of NAs via C-level arithmetic).
sum(advector)
: Equivalent of sum. na.rm=TRUE
is allowed, but note that this feature assumes correct propagation of NAs via C-level arithmetic.
mean(advector)
: Equivalent of mean except no arguments beyond x
are supported.
prod(advector)
: Equivalent of prod except na.rm
not allowed.
is.numeric(advector)
: Makes cov2cor()
work. FIXME: Any unwanted side-effects with this?
as.double(advector)
: Makes as.numeric()
work.
Complex(advector)
: Complex operations are redirected to adcomplex.
Summary(advector)
: Non differentiable Summary operations (e.g. min
max
) are not allowed and will throw an error.
diff(advector)
: Equivalent of diff
print(advector)
: Print method
ifelse(test = num, yes = ad, no = ad)
: Equivalent of ifelse
ifelse(test = num, yes = num, no = num)
: Default method
x <- advector(1:9) a <- array(x, c(3,3)) ## as an array outer(x, x, "+") ## Implicit via 'rep' rev(x) ## Implicit via '['
x <- advector(1:9) a <- array(x, c(3,3)) ## as an array outer(x, x, "+") ## Implicit via 'rep' rev(x) ## Implicit via '['
The functions listed in this help page are all applicable for AD types. Method dispatching follows a simple rule: If at least one argument is an AD type then a special AD implementation is selected. In all other cases a default implementation is used (typically that of the stats package). Argument recycling follows the R standard (although wihout any warnings).
## S4 method for signature 'ad,ad.,logical.' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'num,num.,logical.' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'ad,ad,ad.,logical.' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'num,num,num.,logical.' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'ad,ad,ad,logical.' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'num,num,num,logical.' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'ad,ad,ad,missing,logical.' dbeta(x, shape1, shape2, log) ## S4 method for signature 'num,num,num,missing,logical.' dbeta(x, shape1, shape2, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dbeta(x, shape1, shape2, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dbeta(x, shape1, shape2, log) ## S4 method for signature 'ad,ad,ad,missing,logical.' df(x, df1, df2, log) ## S4 method for signature 'num,num,num,missing,logical.' df(x, df1, df2, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' df(x, df1, df2, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' df(x, df1, df2, log) ## S4 method for signature 'ad,ad.,ad.,logical.' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'ad,ad,missing,logical.' dt(x, df, log) ## S4 method for signature 'num,num,missing,logical.' dt(x, df, log) ## S4 method for signature 'osa,ANY,ANY,ANY' dt(x, df, log) ## S4 method for signature 'simref,ANY,ANY,ANY' dt(x, df, log) ## S4 method for signature 'ad,ad,ad,missing,logical.' dnbinom(x, size, prob, log) ## S4 method for signature 'num,num,num,missing,logical.' dnbinom(x, size, prob, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dnbinom(x, size, prob, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dnbinom(x, size, prob, log) ## S4 method for signature 'ad,ad,logical.' dpois(x, lambda, log = FALSE) ## S4 method for signature 'num,num,logical.' dpois(x, lambda, log = FALSE) ## S4 method for signature 'osa,ANY,ANY' dpois(x, lambda, log = FALSE) ## S4 method for signature 'simref,ANY,ANY' dpois(x, lambda, log = FALSE) ## S4 method for signature 'ad,ad,missing,ad.,logical.' dgamma(x, shape, scale, log) ## S4 method for signature 'num,num,missing,num.,logical.' dgamma(x, shape, scale, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dgamma(x, shape, scale, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dgamma(x, shape, scale, log) ## S4 method for signature 'ad,ad.,ad.,missing,missing' pnorm(q, mean, sd) ## S4 method for signature 'num,num.,num.,missing,missing' pnorm(q, mean, sd) ## S4 method for signature 'ad,ad,missing,ad.,missing,missing' pgamma(q, shape, scale) ## S4 method for signature 'num,num,missing,num.,missing,missing' pgamma(q, shape, scale) ## S4 method for signature 'ad,ad,missing,missing' ppois(q, lambda) ## S4 method for signature 'num,num,missing,missing' ppois(q, lambda) ## S4 method for signature 'ad,ad.,missing,missing' pexp(q, rate) ## S4 method for signature 'num,num.,missing,missing' pexp(q, rate) ## S4 method for signature 'ad,ad,ad.,missing,missing' pweibull(q, shape, scale) ## S4 method for signature 'num,num,num.,missing,missing' pweibull(q, shape, scale) ## S4 method for signature 'ad,ad,ad,missing,missing,missing' pbeta(q, shape1, shape2) ## S4 method for signature 'num,num,num,missing,missing,missing' pbeta(q, shape1, shape2) ## S4 method for signature 'ad,ad.,ad.,missing,missing' qnorm(p, mean, sd) ## S4 method for signature 'num,num.,num.,missing,missing' qnorm(p, mean, sd) ## S4 method for signature 'ad,ad,missing,ad.,missing,missing' qgamma(p, shape, scale) ## S4 method for signature 'num,num,missing,num.,missing,missing' qgamma(p, shape, scale) ## S4 method for signature 'ad,ad.,missing,missing' qexp(p, rate) ## S4 method for signature 'num,num.,missing,missing' qexp(p, rate) ## S4 method for signature 'ad,ad,ad.,missing,missing' qweibull(p, shape, scale) ## S4 method for signature 'num,num,num.,missing,missing' qweibull(p, shape, scale) ## S4 method for signature 'ad,ad,ad,missing,missing,missing' qbeta(p, shape1, shape2) ## S4 method for signature 'num,num,num,missing,missing,missing' qbeta(p, shape1, shape2) ## S4 method for signature 'ad,ad,missing' besselK(x, nu) ## S4 method for signature 'num,num,missing' besselK(x, nu) ## S4 method for signature 'ad,ad,missing' besselI(x, nu) ## S4 method for signature 'num,num,missing' besselI(x, nu) ## S4 method for signature 'ad,ad' besselJ(x, nu) ## S4 method for signature 'num,num' besselJ(x, nu) ## S4 method for signature 'ad,ad' besselY(x, nu) ## S4 method for signature 'num,num' besselY(x, nu) dbinom_robust(x, size, logit_p, log) dsn(x, alpha, log) dSHASHo(x, mu, sigma, nu, tau, log) dtweedie(x, mu, phi, p, log) dnbinom2(x, mu, var, log) dnbinom_robust(x, log_mu, log_var_minus_mu, log) dlgamma(x, shape, scale, log) ## S4 method for signature 'ad,ad.,ad.,logical.' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'ANY,ANY,ANY,ANY' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'advector,missing,missing,missing,missing' plogis(q) ## S4 method for signature 'advector,missing,missing,missing,missing' qlogis(p) dcompois(x, mode, nu, log = FALSE) dcompois2(x, mean, nu, log = FALSE) ## S4 method for signature 'ad,ad,ad,missing,missing' pbinom(q, size, prob) ## S4 method for signature 'num,num,num,missing,missing' pbinom(q, size, prob) ## S4 method for signature 'ad,ad.,ad,logical.' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'num,num.,num,logical.' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'ANY,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE)
## S4 method for signature 'ad,ad.,logical.' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'num,num.,logical.' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY' dexp(x, rate = 1, log = FALSE) ## S4 method for signature 'ad,ad,ad.,logical.' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'num,num,num.,logical.' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dweibull(x, shape, scale = 1, log = FALSE) ## S4 method for signature 'ad,ad,ad,logical.' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'num,num,num,logical.' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dbinom(x, size, prob, log = FALSE) ## S4 method for signature 'ad,ad,ad,missing,logical.' dbeta(x, shape1, shape2, log) ## S4 method for signature 'num,num,num,missing,logical.' dbeta(x, shape1, shape2, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dbeta(x, shape1, shape2, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dbeta(x, shape1, shape2, log) ## S4 method for signature 'ad,ad,ad,missing,logical.' df(x, df1, df2, log) ## S4 method for signature 'num,num,num,missing,logical.' df(x, df1, df2, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' df(x, df1, df2, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' df(x, df1, df2, log) ## S4 method for signature 'ad,ad.,ad.,logical.' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dlogis(x, location = 0, scale = 1, log = FALSE) ## S4 method for signature 'ad,ad,missing,logical.' dt(x, df, log) ## S4 method for signature 'num,num,missing,logical.' dt(x, df, log) ## S4 method for signature 'osa,ANY,ANY,ANY' dt(x, df, log) ## S4 method for signature 'simref,ANY,ANY,ANY' dt(x, df, log) ## S4 method for signature 'ad,ad,ad,missing,logical.' dnbinom(x, size, prob, log) ## S4 method for signature 'num,num,num,missing,logical.' dnbinom(x, size, prob, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dnbinom(x, size, prob, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dnbinom(x, size, prob, log) ## S4 method for signature 'ad,ad,logical.' dpois(x, lambda, log = FALSE) ## S4 method for signature 'num,num,logical.' dpois(x, lambda, log = FALSE) ## S4 method for signature 'osa,ANY,ANY' dpois(x, lambda, log = FALSE) ## S4 method for signature 'simref,ANY,ANY' dpois(x, lambda, log = FALSE) ## S4 method for signature 'ad,ad,missing,ad.,logical.' dgamma(x, shape, scale, log) ## S4 method for signature 'num,num,missing,num.,logical.' dgamma(x, shape, scale, log) ## S4 method for signature 'osa,ANY,ANY,ANY,ANY' dgamma(x, shape, scale, log) ## S4 method for signature 'simref,ANY,ANY,ANY,ANY' dgamma(x, shape, scale, log) ## S4 method for signature 'ad,ad.,ad.,missing,missing' pnorm(q, mean, sd) ## S4 method for signature 'num,num.,num.,missing,missing' pnorm(q, mean, sd) ## S4 method for signature 'ad,ad,missing,ad.,missing,missing' pgamma(q, shape, scale) ## S4 method for signature 'num,num,missing,num.,missing,missing' pgamma(q, shape, scale) ## S4 method for signature 'ad,ad,missing,missing' ppois(q, lambda) ## S4 method for signature 'num,num,missing,missing' ppois(q, lambda) ## S4 method for signature 'ad,ad.,missing,missing' pexp(q, rate) ## S4 method for signature 'num,num.,missing,missing' pexp(q, rate) ## S4 method for signature 'ad,ad,ad.,missing,missing' pweibull(q, shape, scale) ## S4 method for signature 'num,num,num.,missing,missing' pweibull(q, shape, scale) ## S4 method for signature 'ad,ad,ad,missing,missing,missing' pbeta(q, shape1, shape2) ## S4 method for signature 'num,num,num,missing,missing,missing' pbeta(q, shape1, shape2) ## S4 method for signature 'ad,ad.,ad.,missing,missing' qnorm(p, mean, sd) ## S4 method for signature 'num,num.,num.,missing,missing' qnorm(p, mean, sd) ## S4 method for signature 'ad,ad,missing,ad.,missing,missing' qgamma(p, shape, scale) ## S4 method for signature 'num,num,missing,num.,missing,missing' qgamma(p, shape, scale) ## S4 method for signature 'ad,ad.,missing,missing' qexp(p, rate) ## S4 method for signature 'num,num.,missing,missing' qexp(p, rate) ## S4 method for signature 'ad,ad,ad.,missing,missing' qweibull(p, shape, scale) ## S4 method for signature 'num,num,num.,missing,missing' qweibull(p, shape, scale) ## S4 method for signature 'ad,ad,ad,missing,missing,missing' qbeta(p, shape1, shape2) ## S4 method for signature 'num,num,num,missing,missing,missing' qbeta(p, shape1, shape2) ## S4 method for signature 'ad,ad,missing' besselK(x, nu) ## S4 method for signature 'num,num,missing' besselK(x, nu) ## S4 method for signature 'ad,ad,missing' besselI(x, nu) ## S4 method for signature 'num,num,missing' besselI(x, nu) ## S4 method for signature 'ad,ad' besselJ(x, nu) ## S4 method for signature 'num,num' besselJ(x, nu) ## S4 method for signature 'ad,ad' besselY(x, nu) ## S4 method for signature 'num,num' besselY(x, nu) dbinom_robust(x, size, logit_p, log) dsn(x, alpha, log) dSHASHo(x, mu, sigma, nu, tau, log) dtweedie(x, mu, phi, p, log) dnbinom2(x, mu, var, log) dnbinom_robust(x, log_mu, log_var_minus_mu, log) dlgamma(x, shape, scale, log) ## S4 method for signature 'ad,ad.,ad.,logical.' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dnorm(x, mean = 0, sd = 1, log = FALSE) ## S4 method for signature 'ANY,ANY,ANY,ANY' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'num,num.,num.,logical.' dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE) ## S4 method for signature 'advector,missing,missing,missing,missing' plogis(q) ## S4 method for signature 'advector,missing,missing,missing,missing' qlogis(p) dcompois(x, mode, nu, log = FALSE) dcompois2(x, mean, nu, log = FALSE) ## S4 method for signature 'ad,ad,ad,missing,missing' pbinom(q, size, prob) ## S4 method for signature 'num,num,num,missing,missing' pbinom(q, size, prob) ## S4 method for signature 'ad,ad.,ad,logical.' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'num,num.,num,logical.' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'osa,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'simref,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE) ## S4 method for signature 'ANY,ANY,ANY,ANY' dmultinom(x, size = NULL, prob, log = FALSE)
x |
observation vector |
rate |
parameter |
log |
Logical; Return log density/probability? |
shape |
parameter |
scale |
parameter |
size |
parameter |
prob |
parameter |
shape1 |
parameter |
shape2 |
parameter |
df1 |
parameter |
df2 |
parameter |
location |
parameter |
df |
parameter |
lambda |
parameter |
q |
vector of quantiles |
mean |
parameter |
sd |
parameter |
p |
parameter |
nu |
parameter |
logit_p |
parameter |
alpha |
parameter |
mu |
parameter |
sigma |
parameter |
tau |
parameter |
phi |
parameter |
var |
parameter |
log_mu |
parameter |
log_var_minus_mu |
parameter |
meanlog |
Parameter; Mean on log scale. |
sdlog |
Parameter; SD on log scale. |
mode |
parameter |
Specific documentation of the functions and arguments should be looked up elsewhere:
All S4 methods behave as the corresponding functions in the
stats package. However, some arguements may not be
implemented in the AD case (e.g. lower-tail
).
Other funtions behave as the corresponding TMB versions for which documentation should be looked up online.
In autodiff contexts an object of class "advector"
is returned; Otherwise a standard numeric vector.
dexp(x = ad, rate = ad., log = logical.)
: AD implementation of dexp
dexp(x = num, rate = num., log = logical.)
: Default method
dexp(x = osa, rate = ANY, log = ANY)
: OSA implementation
dexp(x = simref, rate = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dweibull(x = ad, shape = ad, scale = ad., log = logical.)
: AD implementation of dweibull
dweibull(x = num, shape = num, scale = num., log = logical.)
: Default method
dweibull(x = osa, shape = ANY, scale = ANY, log = ANY)
: OSA implementation
dweibull(x = simref, shape = ANY, scale = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dbinom(x = ad, size = ad, prob = ad, log = logical.)
: AD implementation of dbinom
dbinom(x = num, size = num, prob = num, log = logical.)
: Default method
dbinom(x = osa, size = ANY, prob = ANY, log = ANY)
: OSA implementation
dbinom(x = simref, size = ANY, prob = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dbeta(x = ad, shape1 = ad, shape2 = ad, ncp = missing, log = logical.)
: AD implementation of dbeta
dbeta(x = num, shape1 = num, shape2 = num, ncp = missing, log = logical.)
: Default method
dbeta(x = osa, shape1 = ANY, shape2 = ANY, ncp = ANY, log = ANY)
: OSA implementation
dbeta(x = simref, shape1 = ANY, shape2 = ANY, ncp = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
df(x = ad, df1 = ad, df2 = ad, ncp = missing, log = logical.)
: AD implementation of df
df(x = num, df1 = num, df2 = num, ncp = missing, log = logical.)
: Default method
df(x = osa, df1 = ANY, df2 = ANY, ncp = ANY, log = ANY)
: OSA implementation
df(x = simref, df1 = ANY, df2 = ANY, ncp = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dlogis(x = ad, location = ad., scale = ad., log = logical.)
: AD implementation of dlogis
dlogis(x = num, location = num., scale = num., log = logical.)
: Default method
dlogis(x = osa, location = ANY, scale = ANY, log = ANY)
: OSA implementation
dlogis(x = simref, location = ANY, scale = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dt(x = ad, df = ad, ncp = missing, log = logical.)
: AD implementation of dt
dt(x = num, df = num, ncp = missing, log = logical.)
: Default method
dt(x = osa, df = ANY, ncp = ANY, log = ANY)
: OSA implementation
dt(x = simref, df = ANY, ncp = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dnbinom(x = ad, size = ad, prob = ad, mu = missing, log = logical.)
: AD implementation of dnbinom
dnbinom(x = num, size = num, prob = num, mu = missing, log = logical.)
: Default method
dnbinom(x = osa, size = ANY, prob = ANY, mu = ANY, log = ANY)
: OSA implementation
dnbinom(x = simref, size = ANY, prob = ANY, mu = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dpois(x = ad, lambda = ad, log = logical.)
: AD implementation of dpois
dpois(x = num, lambda = num, log = logical.)
: Default method
dpois(x = osa, lambda = ANY, log = ANY)
: OSA implementation
dpois(x = simref, lambda = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dgamma(x = ad, shape = ad, rate = missing, scale = ad., log = logical.)
: AD implementation of dgamma
dgamma(x = num, shape = num, rate = missing, scale = num., log = logical.)
: Default method
dgamma(x = osa, shape = ANY, rate = ANY, scale = ANY, log = ANY)
: OSA implementation
dgamma(x = simref, shape = ANY, rate = ANY, scale = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
pnorm(q = ad, mean = ad., sd = ad., lower.tail = missing, log.p = missing)
: AD implementation of pnorm
pnorm(q = num, mean = num., sd = num., lower.tail = missing, log.p = missing)
: Default method
pgamma(
q = ad,
shape = ad,
rate = missing,
scale = ad.,
lower.tail = missing,
log.p = missing
)
: AD implementation of pgamma
pgamma(
q = num,
shape = num,
rate = missing,
scale = num.,
lower.tail = missing,
log.p = missing
)
: Default method
ppois(q = ad, lambda = ad, lower.tail = missing, log.p = missing)
: AD implementation of ppois
ppois(q = num, lambda = num, lower.tail = missing, log.p = missing)
: Default method
pexp(q = ad, rate = ad., lower.tail = missing, log.p = missing)
: AD implementation of pexp
pexp(q = num, rate = num., lower.tail = missing, log.p = missing)
: Default method
pweibull(
q = ad,
shape = ad,
scale = ad.,
lower.tail = missing,
log.p = missing
)
: AD implementation of pweibull
pweibull(
q = num,
shape = num,
scale = num.,
lower.tail = missing,
log.p = missing
)
: Default method
pbeta(
q = ad,
shape1 = ad,
shape2 = ad,
ncp = missing,
lower.tail = missing,
log.p = missing
)
: AD implementation of pbeta
pbeta(
q = num,
shape1 = num,
shape2 = num,
ncp = missing,
lower.tail = missing,
log.p = missing
)
: Default method
qnorm(p = ad, mean = ad., sd = ad., lower.tail = missing, log.p = missing)
: AD implementation of qnorm
qnorm(p = num, mean = num., sd = num., lower.tail = missing, log.p = missing)
: Default method
qgamma(
p = ad,
shape = ad,
rate = missing,
scale = ad.,
lower.tail = missing,
log.p = missing
)
: AD implementation of qgamma
qgamma(
p = num,
shape = num,
rate = missing,
scale = num.,
lower.tail = missing,
log.p = missing
)
: Default method
qexp(p = ad, rate = ad., lower.tail = missing, log.p = missing)
: AD implementation of qexp
qexp(p = num, rate = num., lower.tail = missing, log.p = missing)
: Default method
qweibull(
p = ad,
shape = ad,
scale = ad.,
lower.tail = missing,
log.p = missing
)
: AD implementation of qweibull
qweibull(
p = num,
shape = num,
scale = num.,
lower.tail = missing,
log.p = missing
)
: Default method
qbeta(
p = ad,
shape1 = ad,
shape2 = ad,
ncp = missing,
lower.tail = missing,
log.p = missing
)
: AD implementation of qbeta
qbeta(
p = num,
shape1 = num,
shape2 = num,
ncp = missing,
lower.tail = missing,
log.p = missing
)
: Default method
besselK(x = ad, nu = ad, expon.scaled = missing)
: AD implementation of besselK
besselK(x = num, nu = num, expon.scaled = missing)
: Default method
besselI(x = ad, nu = ad, expon.scaled = missing)
: AD implementation of besselI
besselI(x = num, nu = num, expon.scaled = missing)
: Default method
besselJ(x = ad, nu = ad)
: AD implementation of besselJ
besselJ(x = num, nu = num)
: Default method
besselY(x = ad, nu = ad)
: AD implementation of besselY
besselY(x = num, nu = num)
: Default method
dbinom_robust()
: AD implementation
dsn()
: AD implementation
dSHASHo()
: AD implementation
dtweedie()
: AD implementation
dnbinom2()
: AD implementation
dnbinom_robust()
: AD implementation
dlgamma()
: AD implementation
dnorm(x = ad, mean = ad., sd = ad., log = logical.)
: AD implementation of dnorm
dnorm(x = num, mean = num., sd = num., log = logical.)
: Default method
dnorm(x = osa, mean = ANY, sd = ANY, log = ANY)
: OSA implementation
dnorm(x = simref, mean = ANY, sd = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dlnorm(x = ANY, meanlog = ANY, sdlog = ANY, log = ANY)
: AD implementation of dlnorm.
dlnorm(x = osa, meanlog = ANY, sdlog = ANY, log = ANY)
: OSA implementation.
dlnorm(x = num, meanlog = num., sdlog = num., log = logical.)
: Default method.
plogis(
q = advector,
location = missing,
scale = missing,
lower.tail = missing,
log.p = missing
)
: Minimal AD implementation of plogis
qlogis(
p = advector,
location = missing,
scale = missing,
lower.tail = missing,
log.p = missing
)
: Minimal AD implementation of qlogis
dcompois()
: Conway-Maxwell-Poisson. Calculate density.
dcompois2()
: Conway-Maxwell-Poisson. Calculate density parameterized via the mean.
pbinom(q = ad, size = ad, prob = ad, lower.tail = missing, log.p = missing)
: AD implementation of pbinom
pbinom(q = num, size = num, prob = num, lower.tail = missing, log.p = missing)
: Default method
dmultinom(x = ad, size = ad., prob = ad, log = logical.)
: AD implementation of dmultinom
dmultinom(x = num, size = num., prob = num, log = logical.)
: Default method
dmultinom(x = osa, size = ANY, prob = ANY, log = ANY)
: OSA implementation
dmultinom(x = simref, size = ANY, prob = ANY, log = ANY)
: Simulation implementation. Modifies x
and returns zero.
dmultinom(x = ANY, size = ANY, prob = ANY, log = ANY)
: Default implementation that checks for invalid usage.
MakeTape( function(x) pnorm(x), x=numeric(5))$jacobian(1:5)
MakeTape( function(x) pnorm(x), x=numeric(5))$jacobian(1:5)
Calculates expm(A) %*% v
using plain series summation. The number of terms is determined adaptively when uniformization=TRUE
.
The uniformization method essentially pushes the spectrum of the operator inside a zero centered disc, within which a uniform error bound is available.
If A
is a generator matrix (i.e. expm(A)
is a probability matrix) and if v
is a probability vector, then the relative error of the result is bounded by tol
.
expAv(A, v, transpose = FALSE, uniformization = TRUE, tol = 1e-08, ...)
expAv(A, v, transpose = FALSE, uniformization = TRUE, tol = 1e-08, ...)
A |
Sparse matrix (usually a generator) |
v |
Vector (or matrix) |
transpose |
Calculate |
uniformization |
Use uniformization method? |
tol |
Accuracy if A is a generator matrix and v a probability vector. |
... |
Extra configuration parameters |
Additional supported arguments via ...
currently include:
Nmax
Use no more than this number of terms even if the spcified accuracy cannot be met.
warn
Give warning if number of terms is truncated by Nmax
.
trace
Trace the number of terms when it adaptively changes.
Vector (or matrix)
Grassmann, W. K. (1977). Transient solutions in Markovian queueing systems. Computers & Operations Research, 4(1), 47–53.
Sherlock, C. (2021). Direct statistical inference for finite Markov jump processes via the matrix exponential. Computational Statistics, 36(4), 2863–2887.
Some interpolation methods are available to be used as part of 'RTMB' objective functions.
interpol1Dfun(z, xlim = c(1, length(z)), ...) interpol2Dfun(z, xlim = c(1, nrow(z)), ylim = c(1, ncol(z)), ...) ## S4 method for signature 'ANY,advector,ANY,missing' splinefun(x, y, method = c("fmm", "periodic", "natural")) ## S4 method for signature 'advector,missing,ANY,missing' splinefun(x, method = c("fmm", "periodic", "natural"))
interpol1Dfun(z, xlim = c(1, length(z)), ...) interpol2Dfun(z, xlim = c(1, nrow(z)), ylim = c(1, ncol(z)), ...) ## S4 method for signature 'ANY,advector,ANY,missing' splinefun(x, y, method = c("fmm", "periodic", "natural")) ## S4 method for signature 'advector,missing,ANY,missing' splinefun(x, method = c("fmm", "periodic", "natural"))
z |
Matrix to be interpolated |
xlim |
Domain of x |
... |
Configuration parameters |
ylim |
Domain of y |
x |
spline x coordinates |
y |
spline y coordinates |
method |
Same as for the stats version, however only the three first are available. |
interpol1Dfun
and interpol2Dfun
are kernel smoothers useful in the case where you need a 3rd order smooth representation of a data vector or matrix.
A typical use case is when a high-resolution map needs to be accessed along a random effect trajectory.
Both 1D and 2D cases accept an 'interpolation radius' parameter (default R=2) controlling the degree of smoothness. Note, that only the value R=1 will match the data exactly, while higher radius trades accuracy for smoothness. Note also that these smoothers do not attempt to extrapolate: The returned value will be NaN
outside the valid range (xlim
/ ylim
).
splinefun
imitates the corresponding stats
function. The AD implementation (in contrast to interpol1Dfun
) works for parameter dependent y-coordinates.
function of x.
function of x and y.
interpol1Dfun()
: Construct a kernel smoothed representation of a vector.
interpol2Dfun()
: Construct a kernel smoothed representation of a matrix.
splinefun(x = ANY, y = advector, method = ANY, ties = missing)
: Construct a spline function.
splinefun(x = advector, y = missing, method = ANY, ties = missing)
: Construct a spline function.
## ======= interpol1D ## R=1 => exact match of observations f <- interpol1Dfun(sin(1:10), R=1) layout(t(1:2)) plot(sin(1:10)) plot(f, 1, 10, add=TRUE) title("R=1") F <- MakeTape(f, 0) F3 <- F$jacfun()$jacfun()$jacfun() plot(Vectorize(F3), 1, 10) title("3rd derivative") ## ======= interpol2D ## R=1 => exact match of observations f <- interpol2Dfun(volcano, xlim=c(0,1), ylim=c(0,1), R=1) f(0,0) == volcano[1,1] ## Top-left corner f(1,1) == volcano[87,61] ## Bottom-right corner ## R=2 => trades accuracy for smoothness f <- interpol2Dfun(volcano, xlim=c(0,1), ylim=c(0,1), R=2) f(0,0) - volcano[1,1] ## Error Top-left corner F <- MakeTape(function(x) f(x[1],x[2]), c(.5,.5)) ## ======= splinefun T <- MakeTape(function(x){ S <- splinefun(sin(x)) S(4:6) }, 1:10)
## ======= interpol1D ## R=1 => exact match of observations f <- interpol1Dfun(sin(1:10), R=1) layout(t(1:2)) plot(sin(1:10)) plot(f, 1, 10, add=TRUE) title("R=1") F <- MakeTape(f, 0) F3 <- F$jacfun()$jacfun()$jacfun() plot(Vectorize(F3), 1, 10) title("3rd derivative") ## ======= interpol2D ## R=1 => exact match of observations f <- interpol2Dfun(volcano, xlim=c(0,1), ylim=c(0,1), R=1) f(0,0) == volcano[1,1] ## Top-left corner f(1,1) == volcano[87,61] ## Bottom-right corner ## R=2 => trades accuracy for smoothness f <- interpol2Dfun(volcano, xlim=c(0,1), ylim=c(0,1), R=2) f(0,0) - volcano[1,1] ## Error Top-left corner F <- MakeTape(function(x) f(x[1],x[2]), c(.5,.5)) ## ======= splinefun T <- MakeTape(function(x){ S <- splinefun(sin(x)) S(4:6) }, 1:10)
Multivariate Gaussian densities
dmvnorm(x, mu = 0, Sigma, log = FALSE, scale = 1) dgmrf(x, mu = 0, Q, log = FALSE, scale = 1) dautoreg(x, mu = 0, phi, log = FALSE, scale = 1) dseparable(...) unstructured(k)
dmvnorm(x, mu = 0, Sigma, log = FALSE, scale = 1) dgmrf(x, mu = 0, Q, log = FALSE, scale = 1) dautoreg(x, mu = 0, phi, log = FALSE, scale = 1) dseparable(...) unstructured(k)
x |
Density evaluation point |
mu |
Mean parameter vector |
Sigma |
Covariance matrix |
log |
Logical; Return log density? |
scale |
Extra scale parameter - see section 'Scaling'. |
Q |
Sparse precision matrix |
phi |
Autoregressive parameters |
... |
Log densities |
k |
Dimension |
Multivariate normal density evaluation is done using dmvnorm()
. This is meant for dense covariance matrices. If many evaluations are needed for the same covariance matrix please note that you can pass matrix arguments: When x
is a matrix the density is applied to each row of x
and the return value will be a vector (length = nrow(x)
) of densities.
The function dgmrf()
is essentially identical to dmvnorm()
with the only difference that dgmrf()
is specified via the precision matrix (inverse covariance) assuming that this matrix is sparse.
Autoregressive density evaluation is implemented for all orders via dautoreg()
(including the simplest AR1).
We note that this variant is for a stationary, mean zero and variance one process.
FIXME: Provide parameterization via partial correlations.
Separable extension can be constructed for an unlimited number of inputs. Each input must be a function returning a gaussian mean zero log density. The output of dseparable
is another log density which can be evaluated for array arguments. For example dseparable(f1,f2,f3)
takes as input a 3D array x
. f1
acts in 1st array dimension of x
, f2
in 2nd dimension and so on. In addition to x
, parameters mu
and scale
can be supplied - see below.
Vector of densities.
dmvnorm()
: Multivariate normal distribution. OSA-residuals can be used for argument x
.
dgmrf()
: Multivariate normal distribution. OSA is not implemented.
dautoreg()
: Gaussian stationary mean zero AR(k) density
dseparable()
: Separable extension of Gaussian log-densities
unstructured()
: Helper to generate an unstructured correlation matrix to use with dmvnorm
All the densities accept a scale
argument which replaces SCALE
and VECSCALE
functionality of TMB.
Scaling is applied elementwise on the residual x-mu
. This works as expected when scale
is a scalar or a vector object of the same length as x
.
In addition, dmvnorm
and dgmrf
can be scaled by a vector of length equal to the covariance/precision dimension. In this case the scale
parameter is recycled by row to meet the special row-wise vectorization of these densities.
Replacement of UNSTRUCTURED_CORR
functionality of TMB. Constuct object using us <- unstructured(k)
.
Now us
has two methods: x <- us$parms()
gives the parameter vector used as input to the objective function, and us$corr(x)
turns the parameter vector into an unstructured correlation matrix.
func <- function(x, sd, parm, phi) { ## IID N(0, sd^2) f1 <- function(x)sum(dnorm(x, sd=sd, log=TRUE)) Sigma <- diag(2) + parm ## MVNORM(0, Sigma) f2 <- function(x)dmvnorm(x, Sigma=Sigma, log=TRUE) ## AR(2) process f3 <- function(x)dautoreg(x, phi=phi, log=TRUE) ## Separable extension (implicit log=TRUE) -dseparable(f1, f2, f3)(x) } parameters <- list(x = array(0, c(10, 2, 10)), sd=2, parm=1, phi=c(.9, -.2)) obj <- MakeADFun(function(p)do.call(func, p), parameters, random="x") ## Check that density integrates to 1 obj$fn() ## Check that integral is independent of the outer parameters obj$gr() ## Check that we can simulate from this density s <- obj$simulate()
func <- function(x, sd, parm, phi) { ## IID N(0, sd^2) f1 <- function(x)sum(dnorm(x, sd=sd, log=TRUE)) Sigma <- diag(2) + parm ## MVNORM(0, Sigma) f2 <- function(x)dmvnorm(x, Sigma=Sigma, log=TRUE) ## AR(2) process f3 <- function(x)dautoreg(x, phi=phi, log=TRUE) ## Separable extension (implicit log=TRUE) -dseparable(f1, f2, f3)(x) } parameters <- list(x = array(0, c(10, 2, 10)), sd=2, parm=1, phi=c(.9, -.2)) obj <- MakeADFun(function(p)do.call(func, p), parameters, random="x") ## Check that density integrates to 1 obj$fn() ## Check that integral is independent of the outer parameters obj$gr() ## Check that we can simulate from this density s <- obj$simulate()
OSA residuals are computed using the function
oneStepPredict
. For this to work, you need to mark the
observation inside the objective function using the OBS
function. Thereafter, residual calculation is as simple as
oneStepPredict(obj)
. However, you probably want specify a
method
to use.
oneStepPredict( obj, observation.name = names(obj$env$obs)[1], data.term.indicator = "_RTMB_keep_", ... ) ## S3 method for class 'osa' x[...] ## S3 method for class 'osa' length(x) ## S3 method for class 'osa' dim(x) ## S3 method for class 'osa' is.array(x) ## S3 method for class 'osa' is.matrix(x)
oneStepPredict( obj, observation.name = names(obj$env$obs)[1], data.term.indicator = "_RTMB_keep_", ... ) ## S3 method for class 'osa' x[...] ## S3 method for class 'osa' length(x) ## S3 method for class 'osa' dim(x) ## S3 method for class 'osa' is.array(x) ## S3 method for class 'osa' is.matrix(x)
obj |
TMB model object (output from |
observation.name |
Auto detected - use the default |
data.term.indicator |
Auto detected - use the default |
... |
Passed to |
x |
Object of class 'osa' |
data.frame
with standardized residuals; Same as oneStepPredict.
oneStepPredict()
: Calculate the residuals. See documentation of TMB::
oneStepPredict.
[
: Subset observations marked for OSA calculation.
This function makes sure that when you subset an observation of class "osa"
such as
obs <- new("osa", x=advector(matrix(1:10,2)), keep = cbind(rep(TRUE,10),FALSE,FALSE))
the 'keep' attribute will be adjusted accordingly
obs[,1:2]
length(osa)
: Equivalent of length
dim(osa)
: Equivalent of dim
is.array(osa)
: Equivalent of is.array
is.matrix(osa)
: Equivalent of is.matrix
set.seed(1) rw <- cumsum(.5*rnorm(20)) obs <- rpois(20, lambda=exp(rw)) func <- function(p) { obs <- OBS(obs) ## Mark 'obs' for OSA calculation on request ans <- 0 jump <- c(p$rw[1], diff(p$rw)) ans <- ans - sum(dnorm(jump, sd=p$sd, log=TRUE)) ans <- ans - sum(dpois(obs, lambda=exp(p$rw), log=TRUE)) ans } obj <- MakeADFun(func, parameters=list(rw=rep(0,20), sd=1), random="rw") nlminb(obj$par, obj$fn, obj$gr) res <- oneStepPredict(obj, method="oneStepGeneric", discrete=TRUE, range=c(0,Inf))$residual
set.seed(1) rw <- cumsum(.5*rnorm(20)) obs <- rpois(20, lambda=exp(rw)) func <- function(p) { obs <- OBS(obs) ## Mark 'obs' for OSA calculation on request ans <- 0 jump <- c(p$rw[1], diff(p$rw)) ans <- ans - sum(dnorm(jump, sd=p$sd, log=TRUE)) ans <- ans - sum(dpois(obs, lambda=exp(p$rw), log=TRUE)) ans } obj <- MakeADFun(func, parameters=list(rw=rep(0,20), sd=1), random="rw") nlminb(obj$par, obj$fn, obj$gr) res <- oneStepPredict(obj, method="oneStepGeneric", discrete=TRUE, range=c(0,Inf))$residual
An RTMB objective function can be run in 'simulation mode' where standard likelihood evaluation is replaced by corresponding random number generation. This facilitates automatic simulation under some restrictions. Simulations can be obtained directly from the model object by obj$simulate()
or used indirectly via checkConsistency.
simref(n) ## S3 replacement method for class 'simref' dim(x) <- value ## S3 method for class 'simref' length(x) ## S3 method for class 'simref' dim(x) ## S3 method for class 'simref' is.array(x) ## S3 method for class 'simref' is.matrix(x) ## S3 method for class 'simref' as.array(x, ...) ## S3 method for class 'simref' is.na(x) ## S3 method for class 'simref' x[...] ## S3 replacement method for class 'simref' x[...] <- value ## S3 method for class 'simref' Ops(e1, e2) ## S3 method for class 'simref' Math(x, ...) ## S3 method for class 'simref' t(x) ## S3 method for class 'simref' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'simref' Summary(..., na.rm = FALSE)
simref(n) ## S3 replacement method for class 'simref' dim(x) <- value ## S3 method for class 'simref' length(x) ## S3 method for class 'simref' dim(x) ## S3 method for class 'simref' is.array(x) ## S3 method for class 'simref' is.matrix(x) ## S3 method for class 'simref' as.array(x, ...) ## S3 method for class 'simref' is.na(x) ## S3 method for class 'simref' x[...] ## S3 replacement method for class 'simref' x[...] <- value ## S3 method for class 'simref' Ops(e1, e2) ## S3 method for class 'simref' Math(x, ...) ## S3 method for class 'simref' t(x) ## S3 method for class 'simref' diff(x, lag = 1L, differences = 1L, ...) ## S3 method for class 'simref' Summary(..., na.rm = FALSE)
n |
Length |
x |
Object of class 'simref' |
value |
Replacement (numeric) |
... |
Extra arguments |
e1 |
First argument |
e2 |
Second argument |
lag |
As diff |
differences |
As diff |
na.rm |
Ignored |
In simulation mode all log density evaluation, involving either random effects or observations, is interpreted as probability assignment.
direct vs indirect Assignments can be 'direct' as for example
dnorm(u, log=TRUE) ## u ~ N(0, 1)
or 'indirect' as in
dnorm(2*(u+1), log=TRUE) ## u ~ N(-1, .25)
Indirect assignment works for a limited set of easily invertible functions - see methods(class="simref")
.
Simulation order Note that probability assignments are sequential: All information required to draw a new variable must already be simulated. Vectorized assignment implicitly occurs elementwise from left to right. For example the assignment
dnorm(diff(u), log=TRUE)
is not valid without a prior assignment of u[1]
, e.g.
dnorm(u[1], log=TRUE)
Supported distributions Assignment must use supported density functions. I.e.
dpois(N, exp(u), log=TRUE)
cannot be replaced by
N * u - exp(u)
The latter will have no effect in simulation mode (the simulation will be NA
).
Return value Note that when in simulation mode, the density functions all return zero. The actual simulation is written to the input argument by reference. This is very unlike standard R semantics.
An object with write access to store the simulation.
simref()
: Construct simref
dim(simref) <- value
: Equivalent of dim<-
length(simref)
: Equivalent of length
dim(simref)
: Equivalent of dim
is.array(simref)
: Equivalent of is.array
is.matrix(simref)
: Equivalent of is.matrix
as.array(simref)
: Equivalent of as.array
is.na(simref)
: Equivalent of is.na
[
: Equivalent of [
`[`(simref) <- value
: Equivalent of [<-
Ops(simref)
: Equivalent of Ops
Math(simref)
: Equivalent of Math
t(simref)
: Equivalent of t
diff(simref)
: Equivalent of diff
Summary(simref)
: Summary operations are not invertible and will throw an error.
s <- simref(4) s2 <- 2 * s[1:2] + 1 s2[] <- 7 s ## 3 3 NA NA ## Random walk func <- function(p) { u <- p$u ans <- -dnorm(u[1], log=TRUE) ## u[1] ~ N(0,1) ans <- ans - sum(dnorm(diff(u), log=TRUE)) ## u[i]-u[i-1] ~ N(0,1) } obj <- MakeADFun(func, list(u=numeric(20)), random="u") obj$simulate()
s <- simref(4) s2 <- 2 * s[1:2] + 1 s2[] <- 7 s ## 3 3 NA NA ## Random walk func <- function(p) { u <- p$u ans <- -dnorm(u[1], log=TRUE) ## u[1] ~ N(0,1) ans <- ans - sum(dnorm(diff(u), log=TRUE)) ## u[i]-u[i-1] ~ N(0,1) } obj <- MakeADFun(func, list(u=numeric(20)), random="u") obj$simulate()
The AD tape as an R function
MakeTape(f, x) ## S3 method for class 'Tape' x$name ## S3 method for class 'Tape' print(x, ...) TapeConfig( comparison = c("NA", "forbid", "tape", "allow"), atomic = c("NA", "enable", "disable"), vectorize = c("NA", "disable", "enable") ) DataEval(f, x) GetTape(obj, name = c("ADFun", "ADGrad", "ADHess"), warn = TRUE)
MakeTape(f, x) ## S3 method for class 'Tape' x$name ## S3 method for class 'Tape' print(x, ...) TapeConfig( comparison = c("NA", "forbid", "tape", "allow"), atomic = c("NA", "enable", "disable"), vectorize = c("NA", "disable", "enable") ) DataEval(f, x) GetTape(obj, name = c("ADFun", "ADGrad", "ADHess"), warn = TRUE)
f |
R function |
x |
numeric vector |
name |
Name of a tape method |
... |
Ignored |
comparison |
Set behaviour of AD comparison ( |
atomic |
Set behaviour of AD BLAS operations (notably matrix multiply). |
vectorize |
Enable/disable AD vectorized 'Ops' and 'Math'. |
obj |
Output from |
warn |
Give warning if |
A 'Tape' is a representation of a function that accepts fixed size numeric input and returns fixed size numeric output.
The tape can be constructed using F <- MakeTape(f, x)
where f
is a standard differentiable R function (or more precisely: One using only functions that are documented to work for AD types).
Having constructed a tape F, a number of methods are available:
Evaluation:
Normal function evaluation 'F(x)' for numeric input.
AD evaluation 'F(x)' as part of other tapes.
Jacobian calculations using 'F$jacobian(x)'.
Transformation:
Get new tape representing the Jacobian using F$jacfun()
.
Get new tape representing the sparse Jacobian using F$jacfun(sparse=TRUE)
.
Get new tape representing the Laplace approximation using F$laplace(indices)
.
Get new tape representing the Saddle Point approximation using F$laplace(indices,SPA=TRUE)
.
Get new tape representing the optimum (minimum) wrt indices
by F$newton(indices)
.
Get a 'shared pointer' representation of a tape using F$atomic()
.
Get tape of a single node by F$node(index)
(mainly useful for derivative debugging).
Modification:
Simplify internal representation of a tape using F$simplify()
.
Extract tape information:
Get internal parameter vector by F$par()
.
Get computational graph by F$graph()
.
Print the tape by F$print()
.
Get internal arrays as a data.frame
by F$data.frame()
.
Object of class "Tape"
.
$
: Get a tape method.
print(Tape)
: Print method
MakeTape()
: Generate a 'Tape' of an R function.
TapeConfig()
: Global configuration parameters of the tape (experts only!)
comparison By default, AD comparison gives an error
(comparison="forbid"
).
This is the safe and recommended behaviour, because comparison is a
non-differentiable operation. If you are building a tape that
requires indicator functions e.g. f(x)*(x<0)+g(x)*(x>=0)
then use comparison="tape"
to add the indicators to the
tape. A final option comparison="allow"
exists for
testing/illustration purposes. Do not use.
DataEval()
: Move a chunk of data from R to the tape by evaluating a normal R function (replaces TMB functionality 'DATA_UPDATE').
GetTape()
: Extract tapes from a model object created by MakeADFun
.
F <- MakeTape(prod, numeric(3)) show(F) F$print() H <- F$jacfun()$jacfun() ## Hessian tape show(H) #### Handy way to plot the graph of F if (requireNamespace("igraph")) { G <- igraph::graph_from_adjacency_matrix(F$graph()) plot(G, vertex.size=17, layout=igraph::layout_as_tree) } ## Taped access of an element of 'rivers' dataset F <- MakeTape(function(i) DataEval( function(i) rivers[i] , i), 1 ) F(1) F(2)
F <- MakeTape(prod, numeric(3)) show(F) F$print() H <- F$jacfun()$jacfun() ## Hessian tape show(H) #### Handy way to plot the graph of F if (requireNamespace("igraph")) { G <- igraph::graph_from_adjacency_matrix(F$graph()) plot(G, vertex.size=17, layout=igraph::layout_as_tree) } ## Taped access of an element of 'rivers' dataset F <- MakeTape(function(i) DataEval( function(i) rivers[i] , i), 1 ) F(1) F(2)
Interface to TMB
MakeADFun( func, parameters, random = NULL, profile = NULL, integrate = NULL, intern = FALSE, map = list(), ADreport = FALSE, silent = FALSE, ridge.correct = FALSE, ... ) sdreport(obj, ...) ADREPORT(x) REPORT(x) getAll(..., warn = TRUE) OBS(x) checkConsistency(obj, fast = TRUE, ...)
MakeADFun( func, parameters, random = NULL, profile = NULL, integrate = NULL, intern = FALSE, map = list(), ADreport = FALSE, silent = FALSE, ridge.correct = FALSE, ... ) sdreport(obj, ...) ADREPORT(x) REPORT(x) getAll(..., warn = TRUE) OBS(x) checkConsistency(obj, fast = TRUE, ...)
func |
Function taking a parameter list (or parameter vector) as input. |
parameters |
Parameter list (or parameter vector) used by |
random |
As MakeADFun. |
profile |
As MakeADFun. |
integrate |
As MakeADFun. |
intern |
As MakeADFun. |
map |
As MakeADFun. |
ADreport |
As MakeADFun. |
silent |
As MakeADFun. |
ridge.correct |
Experimental |
... |
Passed to TMB |
obj |
TMB model object (output from MakeADFun) |
x |
Observation object |
warn |
Give a warning if overwriting an existing object? |
fast |
Pass |
MakeADFun builds a TMB model object mostly compatible with the TMB package and with an almost identical interface.
The main difference in RTMB is that the objective function and the data is now given via a single argument func
. Because func
can be a closure, there is no need for an explicit data argument to MakeADFun (see examples).
TMB model object.
MakeADFun()
: Interface to MakeADFun.
sdreport()
: Interface to sdreport.
ADREPORT()
: Can be used inside the objective function to report quantities for which uncertainties will be calculated by sdreport.
REPORT()
: Can be used inside the objective function to report quantities via the model object using obj$report()
.
getAll()
: Can be used to assign all parameter or data objects from a list inside the objective function.
OBS()
: Mark the observation to be used by either oneStepPredict
or by obj$simulate
.
If your objective function is using an observation x
, you simply need
to run x <- OBS(x)
inside the objective function.
This will (1) allow oneStepPredict
to change the class of x
to
"osa"
(OSA-residuals) or (2) allow obj$simulate
to change the class of x
to
"simref"
(Simulation) on request.
checkConsistency()
: Interface to checkConsistency.
## Objective with data from the user workspace data(rivers) f <- function(p) { -sum(dnorm(rivers, p$mu, p$sd, log=TRUE)) } obj <- MakeADFun(f, list(mu=0, sd=1), silent=TRUE) opt <- nlminb(obj$par, obj$fn, obj$gr) sdreport(obj) ## Same objective with an explicit data argument f <- function(p, data) { -sum(dnorm(data, p$mu, p$sd, log=TRUE)) } cmb <- function(f, d) function(p) f(p, d) ## Helper to make closure obj <- MakeADFun(cmb(f, rivers), list(mu=0, sd=1), silent=TRUE) ## 'REML trick' obj2 <- MakeADFun(cmb(f, rivers), list(mu=0, sd=1), random="mu", silent=TRUE) opt2 <- nlminb(obj2$par, obj2$fn, obj2$gr) sdreport(obj2) ## Compare with sd(rivers) ## Single argument vector function with numeric 'parameters' fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } obj <- MakeADFun(fr, numeric(2), silent=TRUE) nlminb(c(-1.2, 1), obj$fn, obj$gr, obj$he)
## Objective with data from the user workspace data(rivers) f <- function(p) { -sum(dnorm(rivers, p$mu, p$sd, log=TRUE)) } obj <- MakeADFun(f, list(mu=0, sd=1), silent=TRUE) opt <- nlminb(obj$par, obj$fn, obj$gr) sdreport(obj) ## Same objective with an explicit data argument f <- function(p, data) { -sum(dnorm(data, p$mu, p$sd, log=TRUE)) } cmb <- function(f, d) function(p) f(p, d) ## Helper to make closure obj <- MakeADFun(cmb(f, rivers), list(mu=0, sd=1), silent=TRUE) ## 'REML trick' obj2 <- MakeADFun(cmb(f, rivers), list(mu=0, sd=1), random="mu", silent=TRUE) opt2 <- nlminb(obj2$par, obj2$fn, obj2$gr) sdreport(obj2) ## Compare with sd(rivers) ## Single argument vector function with numeric 'parameters' fr <- function(x) { ## Rosenbrock Banana function x1 <- x[1] x2 <- x[2] 100 * (x2 - x1 * x1)^2 + (1 - x1)^2 } obj <- MakeADFun(fr, numeric(2), silent=TRUE) nlminb(c(-1.2, 1), obj$fn, obj$gr, obj$he)